The Initial Value Problem for a Third Order Dispersive Equation on the Two-dimensional Torus

نویسندگان

  • HIROYUKI CHIHARA
  • H. CHIHARA
چکیده

|α|=2 2! α! aσ(α)(x)∂ α +~b(x) · ∇+ c(x), ∂t = ∂/∂t, ∂j = ∂/∂xj , ∂ = ∇ = (∂1, ∂2), p(ξ) = ξ1ξ2(ξ1 + ξ2), α = (α1, α2) is a multi-index, |α| = α1 + α2, α! = α1!α2!, σ(α) = (α1 − α2)/2, ~b(x) = (b1(x), b2(x)), and aσ(α), bj(x), c(x) are real-valued smooth functions on T2. Such operators arise in the study of gravity wave of deep water. See [1], [3], [4] and the references therein. The purpose of this paper is to present the necessary and sufficient condition of the existence of a unique solution to (1)-(2). To state our results, we introduce notation and the definition of L2-wellposedness. C∞(T2) is the set of all smooth functions on T2. L2(T2) is the set of all square-integrable functions on T2. For g∈L2(T2), set ‖g‖ = ( ∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fuzzy Solution for Exact Second Order Fuzzy Differential Equation

In the present paper, the analytical solution for an exact second order fuzzy initial value problem under generalized Hukuhara differentiability is obtained. First the solution of first order linear fuzzy differential equation under generalized Hukuhara differentiability is investigated using integration factor methods in two cases. The second based on the type of generalized Hukuhara different...

متن کامل

Aerodynamic Design Optimization Using Genetic Algorithm (RESEARCH NOTE)

An efficient formulation for the robust shape optimization of aerodynamic objects is introduced in this paper. The formulation has three essential features. First, an Euler solver based on a second-order Godunov scheme is used for the flow calculations. Second, a genetic algorithm with binary number encoding is implemented for the optimization procedure. The third ingredient of the procedure is...

متن کامل

Third Order Semilinear Dispersive Equations Related to Deep Water Waves

ABSTRACT. We present local existence theorem of the initial value problem for third order semilinear dispersive partial differential equations in two space dimensions. This type of equations arises in the study of gravity wave of deep water, and cannot be solved by the classical energy method. To solve the initial value problem, we make full use of pseudodifferential operators with nonsmooth co...

متن کامل

A High Order Approximation of the Two Dimensional Acoustic Wave Equation with Discontinuous Coefficients

This paper concerns with the modeling and construction of a fifth order method for two dimensional acoustic wave equation in heterogenous media. The method is based on a standard discretization of the problem on smooth regions and a nonstandard method for nonsmooth regions. The construction of the nonstandard method is based on the special treatment of the interface using suitable jump conditio...

متن کامل

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004